Last updated: 2020-06-12
Checks: 6 1
Knit directory: PSYMETAB/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191126)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: ._docs
Ignored: .drake/
Ignored: analysis/.Rhistory
Ignored: analysis/._GWAS.Rmd
Ignored: analysis/._data_processing_in_genomestudio.Rmd
Ignored: analysis/._quality_control.Rmd
Ignored: analysis/GWAS/
Ignored: analysis/PRS/
Ignored: analysis/QC/
Ignored: analysis/figure/
Ignored: analysis_prep_1_clustermq.out
Ignored: analysis_prep_2_clustermq.out
Ignored: analysis_prep_3_clustermq.out
Ignored: analysis_prep_4_clustermq.out
Ignored: data/processed/
Ignored: data/raw/
Ignored: download_impute_1_clustermq.out
Ignored: init_analysis_1_clustermq.out
Ignored: init_analysis_2_clustermq.out
Ignored: init_analysis_3_clustermq.out
Ignored: init_analysis_4_clustermq.out
Ignored: init_analysis_5_clustermq.out
Ignored: init_analysis_6_clustermq.out
Ignored: packrat/lib-R/
Ignored: packrat/lib-ext/
Ignored: packrat/lib/
Ignored: post_impute_1_clustermq.out
Ignored: pre_impute_qc_1_clustermq.out
Ignored: process_init_10_clustermq.out
Ignored: process_init_11_clustermq.out
Ignored: process_init_12_clustermq.out
Ignored: process_init_13_clustermq.out
Ignored: process_init_14_clustermq.out
Ignored: process_init_15_clustermq.out
Ignored: process_init_16_clustermq.out
Ignored: process_init_17_clustermq.out
Ignored: process_init_18_clustermq.out
Ignored: process_init_19_clustermq.out
Ignored: process_init_1_clustermq.out
Ignored: process_init_20_clustermq.out
Ignored: process_init_21_clustermq.out
Ignored: process_init_22_clustermq.out
Ignored: process_init_23_clustermq.out
Ignored: process_init_24_clustermq.out
Ignored: process_init_25_clustermq.out
Ignored: process_init_26_clustermq.out
Ignored: process_init_27_clustermq.out
Ignored: process_init_28_clustermq.out
Ignored: process_init_29_clustermq.out
Ignored: process_init_2_clustermq.out
Ignored: process_init_30_clustermq.out
Ignored: process_init_31_clustermq.out
Ignored: process_init_3_clustermq.out
Ignored: process_init_4_clustermq.out
Ignored: process_init_5_clustermq.out
Ignored: process_init_6_clustermq.out
Ignored: process_init_7_clustermq.out
Ignored: process_init_8_clustermq.out
Ignored: process_init_9_clustermq.out
Ignored: prs_1_clustermq.out
Ignored: prs_2_clustermq.out
Ignored: prs_3_clustermq.out
Ignored: prs_4_clustermq.out
Untracked files:
Untracked: analysis/genetic_quality_control.Rmd
Untracked: analysis/pheno_quality_control.Rmd
Untracked: analysis/plans.Rmd
Untracked: analysis_prep.log
Untracked: download_impute.log
Untracked: file1.txt
Untracked: file2.txt
Untracked: file3.txt
Untracked: flagged_rows.txt
Untracked: grs.log
Untracked: init_analysis.log
Untracked: problem_drugs.txt
Untracked: problem_ids.txt
Untracked: process_init.log
Untracked: prs.log
Unstaged changes:
Modified: analysis/GWAS.Rmd
Modified: analysis/data_sources.Rmd
Deleted: analysis/project.Rmd
Modified: analysis/quality_control.Rmd
Modified: cache_log.csv
Modified: post_impute.log
Modified: slurm_clustermq.tmpl
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e0d6032 | Sjaarda Jennifer Lynn | 2019-12-06 | edit typos |
html | 46477dd | Jenny Sjaarda | 2019-12-06 | Build site. |
Rmd | b503ef0 | Sjaarda Jennifer Lynn | 2019-12-06 | add more details to website |
html | 9f1ba5e | Jenny Sjaarda | 2019-12-06 | Build site. |
Rmd | c1d579b | Jenny | 2019-12-04 | add details on data |
provided from iGE3
.strand
file.miss
file.multiple
fileThe chip used to generate the data was the GSAMD-24v2, however about 10,000 custom SNPs were also added to the chip. Do you have any recommendations for adding such SNPs to the strand file for processing?
If you have a chip with custom content on it as you do if you are able to send me the .csv annotation file (that contains the TopGenomicSeq information) I can use that to create you a custom strand file that you can then download on a private link, this will ensure the extra SNPs are not lost in the strand update (at the moment they would be removed as non-matching).
GSA_sex-ethnicity.xlsx
.no_accents
) for easier use in R.mv data/raw/phenotype_data/GSA_sex-ethnicity.xlsx data/raw/phenotype_data/QC_sex_eth.xlsx
PSYMETAB/data/raw/phenotype_data/
.PHENO_GWAS_241019.xlsx
.
PSYMETAB/data/phenotype_data/
..csv
file._no_accents.csv
) for easier use in R.PHENO_GWAS_160320.xlsx
.
PHENO_GWAS_160420.xlsx
(processed the same as above).PSYMETAB/data/raw/phenotype_data/
.Code_GEN_CG_11.03.2020.xlsx
.CAF_Sleep_Jenny_05_05_2020_CG.xlsx
.
I am a bit confused by the age and date columns in some cases. For example, for the participant below we have measurements at 4 time points: age 34, 52, 53 and 39 and the date of measurement in the next column. Does the date correspond to the date the blood draw took place? If so, I don’t understand why in 2018 (row 4) this participant was 39 and in 2012 (row 3) they were 53! Or does this column represent the date caffeine was measured (which could be very different from date of extraction)? Ideally I need the age the participant was when the extraction took place.
GEN | age | Date |
---|---|---|
UXEWHQEZ | 52 | 2011-04-26 |
UXEWHQEZ | 34 | 2013-04-02 |
UXEWHQEZ | 52 | 2011-03-24 |
UXEWHQEZ | 53 | 2012-02-27 |
UXEWHQEZ | 39 | 2018-05-07 |
I spotted the problem, it was a mismatch in the ambulatory codes as some of them are written XXXAMB instead of AMBXXX or XXX+letter. I will send Jenny a new version of the file with paying attention to these codes if ok for you?
CAF_Sleep_Jenny_07_05_2020_CG.xlsx
.
Il y a toujours un petit problème avec les IDs : GAWZCNNL et WIFRYNSK. Je mets les problèmes en dessous. Je crois que deux participants ont reçu le meme GEN ID. Peut-être il y avait encore un problème avec le merge ?
GEN | Date | age | age2 | Date2 | days_difference | age_plus_days | age_check |
---|---|---|---|---|---|---|---|
GAWZCNNL | 2011-02-03 | 53 | 22 | 2018-02-22 | 2576 | 60.05753 | problem |
GAWZCNNL | 2011-02-03 | 53 | 60 | 2018-05-08 | 2651 | 60.26301 | sensible |
GAWZCNNL | 2018-02-22 | 22 | 60 | 2018-05-08 | 75 | 22.20548 | sensible |
WIFRYNSK | 2009-01-19 | 31 | 31 | 2018-09-10 | 3521 | 40.64658 | problem |
GEN_CAF_Sleep_Jenny_05_05_2020.xlsx
.
GEN | Date | age | age2 | Date2 | days_difference | age_plus_days | age_check |
---|---|---|---|---|---|---|---|
WIFRYNSK | 2009-01-07 | 31 | 31 | 2018-08-29 | 3521 | 40.64658 | problem |
Okay alors j’ai vérifié et cette erreur est déjà présente dans le fichier que Nermine nous a envoyé, donc ce n’est pas un problème lié au changement de codes.
Je viens de vérifier et en effet j’avais changé l’âge manuellement et il était changé dans les deux observations même si j’ai précisé la date de l’observation… je ne sais pas comment j’ai fais. Alors à la date du 22.12.2008, le patient avait 21 ans, et à la date du 13.08.2018 le patient avait 31 ans.
caffeine_raw %>% mutate(age=replace(age, GEN=="WIFRYNSK" & as.Date(Date)=="2009-01-07", 21)
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRblas.so
LAPACK: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] fuzzyjoin_0.1.5 kableExtra_1.1.0 R.utils_2.9.2
[4] R.oo_1.23.0 R.methodsS3_1.7.1 TwoSampleMR_0.4.25
[7] reader_1.0.6 NCmisc_1.1.6 optparse_1.6.4
[10] readxl_1.3.1 ggthemes_4.2.0 tryCatchLog_1.1.6
[13] futile.logger_1.4.3 DataExplorer_0.8.0 taRifx_1.0.6.1
[16] qqman_0.1.4 MASS_7.3-51.5 bit64_0.9-7
[19] bit_1.1-14 rslurm_0.5.0 rmeta_3.0
[22] devtools_2.2.1 usethis_1.5.1 data.table_1.12.8
[25] clustermq_0.8.8.1 future.batchtools_0.8.1 future_1.15.1
[28] rlang_0.4.5 knitr_1.26 drake_7.12.0.9000
[31] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
[34] purrr_0.3.3 readr_1.3.1 tidyr_1.0.3
[37] tibble_2.1.3 ggplot2_3.2.1 tidyverse_1.3.0
[40] pacman_0.5.1 processx_3.4.1 workflowr_1.6.0
loaded via a namespace (and not attached):
[1] backports_1.1.6 plyr_1.8.5 igraph_1.2.5
[4] lazyeval_0.2.2 storr_1.2.1 listenv_0.8.0
[7] digest_0.6.25 htmltools_0.4.0 fansi_0.4.1
[10] magrittr_1.5 checkmate_1.9.4 memoise_1.1.0
[13] base64url_1.4 remotes_2.1.0 globals_0.12.5
[16] modelr_0.1.5 prettyunits_1.1.0 colorspace_1.4-1
[19] rvest_0.3.5 rappdirs_0.3.1 haven_2.2.0
[22] xfun_0.11 callr_3.4.0 crayon_1.3.4
[25] jsonlite_1.6 brew_1.0-6 glue_1.4.0
[28] gtable_0.3.0 webshot_0.5.2 pkgbuild_1.0.6
[31] scales_1.1.0 futile.options_1.0.1 DBI_1.1.0
[34] Rcpp_1.0.3 viridisLite_0.3.0 progress_1.2.2
[37] txtq_0.2.0 htmlwidgets_1.5.1 httr_1.4.1
[40] getopt_1.20.3 calibrate_1.7.5 ellipsis_0.3.0
[43] pkgconfig_2.0.3 dbplyr_1.4.2 tidyselect_0.2.5
[46] reshape2_1.4.3 later_1.0.0 munsell_0.5.0
[49] cellranger_1.1.0 tools_3.5.3 cli_2.0.1
[52] generics_0.0.2 broom_0.5.3 evaluate_0.14
[55] yaml_2.2.0 fs_1.3.1 packrat_0.5.0
[58] nlme_3.1-143 whisker_0.4 formatR_1.7
[61] proftools_0.99-2 xml2_1.2.2 compiler_3.5.3
[64] rstudioapi_0.10 filelock_1.0.2 testthat_2.3.1
[67] reprex_0.3.0 stringi_1.4.5 highr_0.8
[70] ps_1.3.0 desc_1.2.0 lattice_0.20-38
[73] vctrs_0.2.4 pillar_1.4.3 lifecycle_0.1.0
[76] networkD3_0.4 httpuv_1.5.2 R6_2.4.1
[79] promises_1.1.0 gridExtra_2.3 sessioninfo_1.1.1
[82] codetools_0.2-16 lambda.r_1.2.4 assertthat_0.2.1
[85] pkgload_1.0.2 rprojroot_1.3-2 withr_2.1.2
[88] batchtools_0.9.12 parallel_3.5.3 hms_0.5.3
[91] grid_3.5.3 rmarkdown_1.18 git2r_0.26.1
[94] lubridate_1.7.4